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pre-meeting background on…

- basic probability and statistics

- structural probability and statistics 

- metocean probability and statistics



content – notation & terminology

― notation – typically compressed

― discreet variable  v  continuous variable

― probability mass function  v  probability density function

― random variable  v  deterministic variable

― parameters  v  variables

― independently and identically distributed (𝑖𝑖𝑑)

― addition rule,  multiplication rule  &  chain rule

― parent  v extreme distributions

― marginal probability,  conditional probability, Bayes’ rule  &  Bayesian inference



probability – definition

probabilities, 𝑃 ,are numerical quantities…

― defined on a set of “outcomes”  …………..eg 𝑃 𝐶 ≤ 20𝑚 , 𝑃 20 < 𝐶 ≤ 22𝑚 , 𝑃(𝐶 > 22𝑚)

― non-negative

― additive over mutually exclusive outcomes …………..eg 𝑃 𝐶 ≤ 20𝑚 + 𝑃 20 < 𝐶 ≤ 22𝑚

― sum to 1 over all possible mutually exclusive outcomes

probability of an event A = 𝑃(𝐴) =
number of ways event A can occur
total number of possible outcomes



probability mass function (pmf) & probability

𝑃 𝑋

pmf

𝑋 𝑋– the variable
𝑥𝑖 – a specific value of the variable

෍

𝑖=1

𝑁

𝑃 𝑥𝑖 =1

𝑃 𝑥1

𝑃 𝑥2

𝑃 𝑥3

𝑋 = 𝑥1 𝑋 = 𝑥3𝑋 = 𝑥2



probability density function (PDF) – in 1 dimension

𝑥𝑖

𝑝(𝑥𝑖) =
𝑛𝑖

σ𝑗=1
𝑁 𝑛𝑗

𝑛𝑖

𝑥𝑁𝑥1

Exact distribution
𝑝 𝑋
PDF

𝑋– the variable
𝑥 – a specific value of the variable

𝑃 𝑥𝑖 < 𝑋 < 𝑥𝑖+1

physical quantities that are expected
to be the sum of many independent
processes often have distributions
that are nearly normal
(central limit theorem)



probability density & probability

𝑃 𝑥 ≤ 𝑋 < 𝑥 + 𝑑𝑥 = 𝑝 𝑥 𝑑𝑥
𝑝 𝑥

𝑋 = 𝑥

𝑝 𝑋
PDF

𝑋

in 1D, probability density of 𝑋 = 𝑝 𝑋 =
probability mass

unit of X



𝑋 = 𝑥

probability density & probability of non-exceedance

𝑝 𝑋
PDF

𝑋

𝑃 𝑋 ≤ 𝑥 = න

0

𝑥

𝑝 𝑥 𝑑𝑥



probability density & probability of non-exceedance

𝑃 𝑋 ≤ 𝑥 = න

0

𝑥

𝑝 𝑥 𝑑𝑥

𝑋

0

1

𝑃 𝑋 ≤ 𝑥
probability of 
non-exceedance

𝑝 𝑥

𝑋 = 𝑥

aka
CDF cumulative probability function

𝐹𝑋 𝑥

aka
PDF
𝑓𝑋 𝑥



probability density & probability of exceedance

𝑃 𝑋 < 𝑥 = න

0

𝑋=𝑥

𝑝 𝑋 𝑑𝑋

𝑋

0

1

𝑃 𝑋 > 𝑥
probability of 
exceedance

𝑝 𝑥
pdf

𝑋 = 𝑥

𝑃 𝑋 > 𝑥 = න

𝑥

∞

𝑝 𝑥 𝑑𝑥

aka
𝑄𝑋 𝑥
1 − 𝐹𝑋 𝑥
CCDF complementary cumulative 
probability function



”point” statistics 
from tank tests

”area” statistics (72x72m) 
from tank tests

Rayleigh

Forristall

Wave stat.: Hs=12m; Tp=12.5s; Sp=20

probability of exceedance

𝑃 𝐶 > 𝑐

probability of
exceedance of 

individual crest ht (C)
in a given sea state

P(C>c) in sea state Hs=12; Tp=12.5; Sp=20…

log scale rather than 
linear (0 to 1) shows 
the tail in more detail 
at extreme values  



random variables ( v deterministic variables)

𝐹𝑦 (S355)355 MPa
(50ksi)

𝑝𝐹𝑦(𝑓𝑦)

𝑇 (plate thk)t nominal

𝑝𝑇(𝑡)

location 𝜇
mean (expectation)
mode (mp)
median (P50)

scale
standard deviation 𝜎
variance 𝜎2

COV  𝜎/𝜇
dispersion 𝛽 = 𝜎𝑙𝑜𝑔𝑥

shape 𝜉
tail properties

parameters



standard probability density functions
Continuous distributions
Uniform
Normal
Lognormal
Gamma
Inverse-gamma
Chi-square
Inverse-chi-square
Scaled inverse-chi-square
Exponential
Laplace
Weibull
Wishart
Inverse-Wishart
LKJ  correlation
t
Beta
Dirichlet
Logistic
Log-logistic

Discrete distributions
Poisson
Binomial
Negative-binomial
Beta-binomial

𝑝 𝑥 =
1

𝑏 − 𝑎

𝑝 𝑥 =
1

𝜎 2𝜋
exp −

1

2𝜎2
𝑥 − 𝜇 2

𝑝 𝑥 =
1

𝜎𝑥 2𝜋
exp −

1

2𝜎2
log 𝑥 − 𝜇 2



joint probability density function  - 2D

computing the pdf by sampling  
using MCMC (HMC)

in 2D, probability density = 𝑝 𝑋, 𝑌 =
probability mass

unit of X ×unit of Y



joint probability density function  - 2D

𝐶

𝐻𝑠

𝑇

𝑇𝑝

scatter plot

grey dots =  Monte Carlo (random) 
realisations from the joint distribution 
of (𝐶, 𝑇𝑝)

red dots =  stratified Monte Carlo 
realisations from the joint distribution 
of (𝐶, 𝑇𝑝)



joint probability density function  - 2D

𝐶

1

.1

.01

.001

.0001

𝑃(𝐶 > 𝑐)

𝑇𝑝

𝑃(𝑇𝑝 > 𝑡𝑝)

𝑝(𝑐) 𝑝(𝑡𝑝)



joint probability density function  - 3D



joint probability density function - 4D and 12D

X1

X2

X3

X4

X1 X2 X3
X4

𝑝 𝑇𝑝, 𝜎𝜃 , 𝛾, 𝜂𝑠𝑤𝑙 , 𝑢, 𝜃𝑢, 𝑤, 𝜃𝑤 … 𝐻𝑠



Venn-pie (pie area=1)

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 AND 𝐵
= 𝑃 𝐴 ∩ 𝐵
= 0
= mutually exclusive

specific addition rule (for mee) 

𝑃 𝐴 OR 𝐵
= 𝑃 𝐴 ∪ 𝐵
= 𝑃 𝐴 + 𝑃 𝐵

𝑃 𝐴 AND 𝐵
= 𝑃 𝐴 ∩ 𝐵
≠ 0
= not  mutually exclusive

general addition rule 

𝑃 𝐴 OR 𝐵
= 𝑃 𝐴 ∪ 𝐵
= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 ∩ 𝐵
= 𝑃 𝐴 + 𝑃 𝐵 − 𝑃 𝐴 AND 𝐵

addition rule



Venn-pie (pie area=1)

𝑃 𝐴 = 0.2

𝑃 𝐴 ∩ 𝐵 = 0.1

𝑃 𝐵 = 0.3

𝑃 𝐴 ∪ 𝐵 = 0.4

𝑃 𝐴 𝐵 = probability of event A (eg 2 < 𝑋 < 4) occurring given 
event B (eg 0 < 𝑋 < 3) has occurred

𝑃 𝐸 ≤ 𝜂 𝐻𝑠𝑖 = ℎ

probability of wave crest elevation 𝐸 not exceeding 𝜂
given the significant wave height for the 𝑖 th sea state 𝐻𝑠𝑖 equals ℎ

𝑃 𝐿 > 𝑙 𝛼, storm
probability of jacket base shear load 𝐿 exceeding 𝑙
given a (random) storm from direction 𝛼 is occurring

𝑃 𝐴 𝐵 =
𝑃(𝐴 𝑎𝑛𝑑 𝐵)

𝑃 𝐵
=
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
intersection

normalised

conditional probability

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
0.1

0.3
= 33%

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐴
=
0.1

0.2
= 50%

makes 𝑃 𝐴 𝐵 a valid probability 



𝑃 𝐴 𝐵 =
𝑃 𝐴 AND 𝐵

𝑃 𝐵
=
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵

𝑃 𝐴 AND 𝐵 = 𝑃 𝐴 𝐵 × 𝑃 𝐵

𝑃 𝐵 𝐴 =
𝑃 𝐵 AND 𝐴

𝑃 𝐴
=
𝑃 𝐵 ∩ 𝐴

𝑃 𝐴

𝑃 𝐵 AND 𝐴 = 𝑃 𝐵 𝐴 × 𝑃 𝐴

if event A is independent from event B then
𝑃 𝐴 𝐵 = 𝑃 𝐴
𝑃 𝐵 𝐴 = 𝑃 𝐵

𝑃 𝐴 AND 𝐵 = 𝑃 𝐴 × 𝑃 𝐵
𝑃 B AND 𝐴 = 𝑃 𝐵 × 𝑃 𝐴

multiplication rule

eqn (1)

eqn (2)

eqn (3)

eqn (4)

from (1) & (3)
from (2) & (4)

conditional probability of event A occurring given event B has occurred



from last slide - as event A and event B occur together then

𝑃 𝐴 AND 𝐵 = 𝑃 𝐵 AND 𝐴

𝑃 𝐴 𝐵 × 𝑃 𝐵 = 𝑃 𝐵 𝐴 × 𝑃 𝐴

𝑃 𝐴 𝐵 × 𝑃 𝐵

𝑃 𝐵
=
𝑃 𝐵 𝐴 × 𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 × 𝑃 𝐴

𝑃 𝐵

Bayesian inference (probability densities)…

𝑝 𝜽 𝑦 =
𝑝 𝑦 𝜽 × 𝑝 𝜽

𝑝 𝑦

Bayes’ rule

Venn-pie (pie area=1)

𝑃 𝐴 = 0.2

𝑃 𝐴 ∩ 𝐵 = 0.1

𝑃 𝐵 = 0.3

𝑃 𝐴 ∪ 𝐵 = 0.4

𝑃 𝐴 𝐵 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐵
=
0.1

0.3
= 33%

𝑃 𝐵 𝐴 =
𝑃 𝐴 ∩ 𝐵

𝑃 𝐴
=
0.1

0.2
= 50%

𝑃 𝐴 𝐵 =
𝑃 𝐵 𝐴 × 𝑃 𝐴

𝑃 𝐵
=
0.5 × 0.2

0.3
=
0.1

0.3
= 33%



from law of total probability

𝑃 𝐴 =෍

𝑖=1

𝑁

𝑃 𝐴 AND 𝐵 =෍

𝑖=1

𝑁

𝑃 𝐴 ∩ 𝐵𝑖

from conditional probability
𝑃 𝐴 ∩ 𝐵𝑖 = 𝑃 𝐴 𝐵𝑖 × 𝑃 𝐵𝑖

substitute 2nd in 1st

𝑃 𝐴 =෍

𝑖=1

𝑁

𝑃 𝐴 𝐵𝑖 × 𝑃 𝐵𝑖

extending from discreet events to continuous random variables

𝑃 𝐴 = න

𝐵

𝑃 𝐴 𝑋 = 𝑥 × 𝑝 𝑥 𝑑𝑥

chain rule

𝐴

𝐵1

𝐵2 𝐵3 𝐵4

𝐵5

𝐴

𝑋

𝑥 𝑥 + 𝑑𝑥

𝑝 𝑥



marginal probability

𝑝 𝑦, 𝜃

𝑝 𝜃 = න

0

∞

𝑝 𝑦, 𝜃 𝑑𝑦

𝑝 𝑦 = න

0

∞

𝑝 𝑦, 𝜃 𝑑𝜃

(vol =1)

(area =1)

(area =1)

marginal 
probability 
density of 𝑦

joint probability 
density of 𝑦, 𝜃

marginal 
probability 
density of 𝜃

𝜇𝑦
𝜇𝜃

𝑦 𝜃

https://www.youtube.com/watch?v=F97Qf5FGt5M

aka  marginalising or integrating out

https://www.youtube.com/watch?v=F97Qf5FGt5M


conditional probability

𝑝 𝑦 𝜃 = 𝑏 =
𝑝 𝑦, 𝜃 = 𝑏

0׬
∞
𝑝 𝑦, 𝜃 = 𝑏 𝑑𝑦

𝑝 𝑦, 𝜃

𝑝 𝜃 = න

0

∞

𝑝 𝑦, 𝜃 𝑑𝑦

𝑝 𝑦 = න

0

∞

𝑝 𝑦, 𝜃 𝑑𝜃

https://www.youtube.com/watch?v=U7t8lG4E634

(vol =1)

(area =1)

(area =1)

divide by marginal to 
give a valid probability 
(area =1)

probability density of 𝑦 conditional on 𝜃 = 𝑏

marginal 
probability 
density of 𝑦

joint probability 
density of 𝑦, 𝜃

marginal 
probability 
density of 𝜃

𝜇𝑦
𝜇𝜃

𝑦 𝜃

https://www.youtube.com/watch?v=U7t8lG4E634


𝑃𝑎𝑛𝑛𝑢𝑚(𝐻 > ℎ) = න

0

∞

𝑃 𝐻 > ℎ 𝐻𝑠 × 𝑝(𝐻𝑠)𝑑𝐻𝑠

probability of exceedance of largest 
wave height, 𝑃 𝐻 > ℎ , in a given 3hr 
sea state 𝐻𝑠 (ie in the short term)

annual probability of the given sea state 
occurring (ie in the long term)

𝑃
(𝐻

𝑠
>
ℎ
𝑠
)

𝐻

𝐻𝑚𝑝𝑚

𝑃
𝐻
>
ℎ
𝐻
𝑠

𝐻𝑠 = ℎ𝑠

𝑑𝐻𝑠

𝑑𝑃(𝐻𝑠 > ℎ𝑠)

𝐻𝑠

𝑃
𝐻
𝑠
>
ℎ
𝑠

𝐻

𝐻𝑚𝑝𝑚
=

ℎ

𝐻𝑚𝑝𝑚

𝑃 𝐻 > ℎ in the long-term – by chain rule
(aka convolution in ISO 19901-1) 



probability of exceedance for largest in 𝑁 (random) events

probability of the crest of an individual wave (𝐸1) not exceeding a given value (𝜂) in a given sea state 𝐻𝑠 = ℎ is:
𝑃 𝐸1 ≤ 𝜂 𝐻𝑠 = ℎ

probability of the crest of another individual wave (𝐸2) not exceeding the same value (𝜂) in 𝐻𝑠 = ℎ is:
𝑃 𝐸2 ≤ 𝜂 𝐻𝑠 = ℎ

probability of the larger of crest elevations (𝐸1and 𝐸2) not exceeding a given value (𝜂) in 𝐻𝑠 = ℎ (assuming 
independence ie far apart in the sea state) is:

𝑃 𝐸1 ≤ 𝜂 𝐻𝑠 = ℎ and 𝐸2 ≤ 𝜂 𝐻𝑠 = ℎ = 𝑃 𝐸1 ≤ 𝜂 × 𝑃 𝐸2 ≤ 𝜂 = ෑ

𝑖=1

2

𝑃 𝐸𝑖 ≤ 𝜂 = 𝑃 max
𝑖=1,2

𝐸𝑖 ≤ 𝜂

probability of the largest crest elevation in 𝑁 waves exceeding a given value (𝜂) in 𝐻𝑠 = ℎ is   

𝑃 𝑚𝑎𝑥
𝑖=1,𝑁

(𝐸𝑖) > 𝜂 𝐻𝑠 = ℎ = 1 − ෑ

𝑖=1

𝑁

𝐸𝑖 ≤ 𝜂 𝐻𝑠 = ℎ

NB probability of the smallest crest elevation in 𝑁 waves exceeding a given value (𝜂) in 𝐻𝑠 = ℎ is   ς𝑖=1
𝑁 𝑃 𝐸𝑖 > 𝜂



distributions of individual & largest wave ht
for a given sea state with duration 3hr (N=1000)

𝑃 max
𝑖=1,1000

𝐻𝑖 ≤ ℎ = 𝑃 𝐻𝑖 ≤ ℎ 𝑁

𝑝 max
𝑖=1,1000

𝐻 ≤ ℎ

𝑃 𝐻𝑖 ≤ ℎ = parent
Rayleigh with 𝐻𝑠 = 10𝑚

𝑃 𝐻𝑖 ≤ ℎ

𝐻𝑠 = 10𝑚 𝐻𝑚𝑝𝑚_3ℎ𝑟 = 1.86𝐻𝑠𝐻𝑚𝑝𝑚_𝑖𝑛𝑑 = 0.5𝐻𝑠



crest heights shown by red dots
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distribution of individual crest ht – given a 3hr sea state

3hour simulation of sea state

distribution of individual crest 
height in a given sea state

pdf of individual crest 
height in a given sea state



max crest heights (in 3 hrs) shown by red dots
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mpm crest height,𝐶𝑚𝑝𝑚, 

in a sea state

distribution of largest crest ht – given a 3hr sea state

3hour
simulation of 
sea state
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(𝐶
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distribution of largest crest height 
in a given sea state



statistics of extremes – GEV and GPD

Generalised Extreme Value 𝐺𝐸𝑉 distribution

𝑃 𝑋 ≤ 𝑥 = 𝑒𝑥𝑝 − 1 + 𝜉
𝑥−𝜇

𝜎

−1/𝜉
if 𝜉 ≠ 0

𝑃 𝑋 ≤ 𝑥 = 𝑒𝑥𝑝 −𝑒𝑥𝑝
𝑥−𝜇

𝜎
if 𝜉 = 0

𝜇 = location parameter
𝜎 = scale parameter
𝜉 = shape parameter

𝐺𝐸𝑉 is distribution of extreme 𝐺𝑃𝐷 is distribution of data points above a threshold

distribution of extreme = (parent distribution)N

tends to GEV asymptotic distribution as N
becomes large

form of extreme depends on the form of the  tail 
of the parent distribution 

Gumbel 𝜉 = 0
parent has exponential tail

Pareto (Fréchet) 𝜉 > 0
parent has polynomial tail

Weibull 𝜉 < 0
parent has upper end point = 𝜎 + 𝜉 𝑢 − 𝜇 / 𝜉

Generalised Pareto distribution 𝐺𝑃𝐷

𝑃 𝑋 − 𝑢 > 𝑥 𝑋 > 𝑢 = 1 +
𝜉 𝑥−𝑢

𝜎+𝜉 𝑢−𝜇

−1/𝜉

𝜇 = location parameter
𝜎 = scale parameter
𝜉 = shape parameter
𝑢 = threshold



probability of exceedance (extreme values)

shifted exponential

generalised Pareto 

annual probability 
of exceedance

Wave load (𝐿)
normalised by wave load 
with RP=100yrs (𝐿100) 

log scale rather than 
linear (0 to 1) shows 
the tail in more detail 
at extreme values  

𝐿/𝐿100

𝑃𝑎𝑛𝑛𝑢𝑚 𝐿 > 𝑙 𝛼



Poisson probability density function
𝑛 is the number of storms, the magnitude of which is
greater than a given magnitude 𝑚, over a period of length
𝑡 is Poisson distributed.

𝑝 𝑁 𝜈𝑚, 𝑡 =
𝜈𝑚𝑡

𝑁

𝑁!
𝑒−𝜈𝑚𝑡 & 𝑃 𝑁 ≤ 𝑛 = σ𝑖=1

𝑛 𝑝 𝑖 𝜈𝑚, 𝑡

generally, 𝑡 is taken equal to 1 year, so that 𝜈𝑚 is to be
interpreted as the mean annual number of storm
occurrences (depends on 𝑚) - say 𝜈𝑚=100

probability that the time taken for the next storm (with
magnitude greater than 𝑚) to arrive, ie the waiting time 𝑇,
is less than or equal to 𝑡 is:

𝑃 𝑇 ≤ 𝑡 = 1 − exp −𝜈𝑚𝑡 &       𝑝 𝑇 = 𝜈𝑚exp −𝜈𝑚𝑇

if time to next storm is 𝑡 then number of storms during 
the waiting time 𝑇 is zero (ie 𝑁=0):

𝑝 0 𝜈𝑚, 𝑡 =
𝜈𝑚𝑡

0

0!
𝑒−𝜈𝑚𝑡 = 𝑒−𝜈𝑚𝑡 = 1 − 𝑃 𝑇 ≤ 𝑡

mean time to next storm =
1/𝜈𝑚 years=0.01 years

P50 time to next storm =
0.00691 years



Poisson spike process

𝑃 𝑇 ≤ 𝑡 = 1 − exp −𝜈𝑡

where 𝜈 is the mean annual number of storm occurrences 

mean annual number of storms with  𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ is

𝜈𝐻𝑠𝑝𝑒𝑎𝑘>ℎ
= 𝜈 × 𝑃 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ RS

probability of storms with 𝐻𝑠𝑝𝑒𝑎𝑘 ≥ ℎ arriving per year is

𝑃 𝑇 ≤ 1 year 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ = 1 − exp −𝜈𝐻𝑠𝑝𝑒𝑎𝑘>ℎ
× 1 year

𝑃𝑎𝑛𝑛𝑢𝑎𝑙 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ = 1 − exp 𝜈𝑃 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ RS ≅ 𝜈𝑃 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ RS for small 𝜈𝑃 𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ RS

𝐻𝑠𝑝𝑒𝑎𝑘

𝑡𝑖𝑚𝑒 (𝑇)

𝐻𝑠𝑝𝑒𝑎𝑘 = ℎ

storms  occur at random times according 
to a Poisson process with intensity of 𝜈
storms per annum

Given a storm event the probability of  
𝐻𝑠𝑝𝑒𝑎𝑘 > ℎ is given by a GPD 

− used to describe time-dependent events (eg wave loading due to discrete but infrequent storms)

− probability that the time to next storm (ie waiting time 𝑇 is < 𝑡) has an exponential distribution:



Quantiles
are points in a distribution that relate to the 
rank order of values in that distribution. 

Percentiles
are descriptions of quantiles relative to 100; so 
the 75th percentile (upper quartile) is 75% or 
three quarters of the way up an ascending list 
of sorted values of a sample.

Credible interval
Credible interval is a “Bayesian confidence 
interval”, but unlike frequentist confidence 
intervals, credible intervals have a very 
intuitive interpretation: the 90% credible 
interval contains the true parameter value (𝜽) 
with 90% probability.

credible interval (for Bayesian inference)



Bayesian inference key points…

1) uses prior knowledge of parameter distribution 

ie prior distribution of parameters

2) uses available data together with the prior

ie posterior distribution of parameters

3) gives the uncertainty explicitly

Bayesian inference (1)



Bayesian inference (2)

𝑃 𝜃 𝑦 =
𝑃 𝑦 𝜃 × 𝑃 𝜃

𝑃 𝑦

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑝 𝛉|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 =
𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝛉 × 𝑝 𝛉

𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎
=
𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝛉 × 𝑝 𝛉

𝐶
=
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝐶

where
𝛉 = 𝜇, 𝜎, 𝜉 is the vector of parameters for the GPD
𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 is a vector of values of peak 𝐻𝑠 in each storm in the metocean long term simulation

Bayes rule calculates probability densities for 𝜇, 𝜎, 𝜉 given the data of peak 𝐻𝑠 in each storm 
a “continuous family” of GPD fits is obtained, the full posterior distribution is used in the LOADS method

The calculation is performed by sampling using MCMC. MCMC doesn’t need to know the denominator as  
it samples in proportion to the relative magnitude of the posterior rather than the absolute. 
The samples are then normalised to give a valid posterior pdf.



Bayesian inference (3)

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 = 𝑝 𝛉|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 =
𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝛉 × 𝑝 𝛉

𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎
=
𝑝 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝛉 × 𝑝 𝛉

𝐶
=
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 × 𝑝𝑟𝑖𝑜𝑟

𝐶

𝑝 𝛉|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 =
ς𝑖=1
𝑁𝑑𝑎𝑡𝑎 𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖|𝛉 × 𝑝 𝜽

׬ ς
𝑖=1
𝑁𝑑𝑎𝑡𝑎 𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖|𝛉 ×𝑝 𝜽 𝑑𝜽

=
ς𝑖=1
𝑁𝑑𝑎𝑡𝑎 𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖|𝛉 × 𝑝 𝜽

𝐶

𝑝
ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖=1
ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖=2

𝛉 = 𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖=1 𝛉 × 𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖=2 𝛉 =ෑ

𝑖=1

2

𝑝 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖|𝛉



Bayesian inference (4)

Determine using Bayesian inference with a
Generalised Pareto distribution 𝐺𝑃𝐷

𝑃 𝐻𝑠𝑝 − 𝑢 > ℎ𝑠𝑝 𝐻𝑠𝑝 > 𝑢 = 1 +
𝜉 ℎ𝑠𝑝−𝑢

𝜎+𝜉 𝑢−𝜇

−1/𝜉

𝜇 = location parameter
𝜎 = scale parameter
𝜉 = shape parameter
𝑢 = threshold
𝐻𝑠𝑝= peak significant wave ht in a storm. Say we have 1200 years of data ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖 𝑖 = 1, 𝑁

𝑃 𝐻𝑠𝑝 − 𝑢 > ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖
𝐻𝑠𝑝 > 𝑢, 𝜉, 𝜎, 𝜇 = 1 +

𝜉 ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖
−𝑢

𝜎+𝜉 𝑢−𝜇

−1/𝜉

Sampling the above for each ℎ𝑠𝑝 𝑑𝑎𝑡𝑎𝑖 for a range of parameters 𝜉𝑗 , 𝜎𝑗 , 𝜇𝑗 and then taking the product over

𝑖 = 1, 𝑁 gives the likelihood



𝑃 𝐻𝑠𝑝 > ℎ|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 - posterior predictive prob. exceedance

posterior
predictive

PDF

= 𝑝 ℎ|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 = 𝑝׬ ℎ 𝛉 × 𝑝 𝜽|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝑑𝜽 = 𝔼 𝑝 ℎ 𝛉 𝒉𝑠𝑝 𝑑𝑎𝑡𝑎

posterior
predictive
CCDF

= 𝑃 𝐻𝑠𝑝 > ℎ|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 = ℎ=𝐻𝑠𝑝׬
∞

𝑝 ℎ|𝒉𝑠𝑝 𝑑𝑎𝑡𝑎 𝑑ℎ

the posterior predictive distribution takes into account the uncertainty
of the parameter estimates, which is quantified by the posterior distribution. 

sampling distribution for 
future observations of Hs 
given the GPD parameters

posterior distribution of the parameters 
given past observations of Hs (ie data)

posterior predictive distribution is a conditional 
expectation (conditioned on the observed data) 
weighted by the parameter values from the 
posterior distribution

𝐻𝑠𝑝𝑒𝑎𝑘

𝑃
𝐻
𝑠 𝑝

𝑒
𝑎
𝑘
>
ℎ
𝛼

posterior predictive CCDF



P50 (median)

mean 

mean 

P50 (median)

mean of probabilities  v  mean of values



posterior predictive
prob. of exceedance
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