On the challenges and prospects of estimating past and future rainfall extremes

Francis Zwiers Pacific Climate Impacts Consortium University of Victoria, Victoria, BC, Canada

IOGP/JCOMM/WCRP Workshop

Our Future Climate – Understanding the spread of physical risk for the oil and gas industry 25-27 September 2018, BP Upstream Learning Centre, Sunbury Upon Thames, UK

a set and the se de a de de de se

Outline

- Recent status of science on precipitation extremes
 - Historical change
 - Projections based on global models
- The challenge of accounting for non-stationarity in local and regional engineering design
 - Binning scaling
 - Temperature scaling
- Review/discussion
- Additional topics time permitting
 - Storms
 - Hydrological Cycle
 - Riverine Flooding

Historical Change

Precipitation extremes

- Observational studies suggest intensification is occurring
- Expectation of intensification is supported by attribution of
 - atmospheric warming
 - corresponding atmospheric water vapour content increase
 - large scale changes in mean precipitation
 - ocean surface salinity changes
- There are only a few "detection and attribution" studies of long-term changes in extreme precipitation
 - detect human influence at the "global" scale
- Considerable challenges remain in understanding regional precipitation change (e.g., Sarojini et al., <u>2016</u>)
- Local detection of change is very hard

Detection and attribution results

We can also detect the human influence on precipitation extremes over land:

- Climate models with anthropogenic external forcing intensify extreme precipitation similarly to observed
- Climate models with only natural external forcing do not intensify precipitation

Attributed intensification in annual maximum 1-day precipitation:

- 5.2% increase per degree of warming
- uncertainty range [1.3 9.3]%

Estimated waiting time for 1950's 20-year event:

~15-yr in the early 2000's

Local detection of change is very hard

- Significant positive (10.0% of stations, expect 2.5%)
- Significant negative (2.2% of stations, expect 2.5%)
- Estimate of mean sensitivity over land is ~7%/K

Westra et al (2013, Fig. 5); see also Barbero et al., 2017 for a similar study of US data

Projections

Projection of change in 20-year 1-day event

 $\Delta P_{20},~\%,~2081{-}2100,~+10.9\%$

CMIP5 RCP4.5

Change in 20-yr extremes relative to 1986-2005

CMIP5 Projections of 20-yr 1-day events

Constraining local/regional precipitation change – a challenge

If you don't trust models, can you use the observations?

- Two options considered in the literature include:
 - a) Binning scaling, i.e., tabulating high percentiles of precipitation conditional on temperature
 - b) Local/regional non-stationary statistical models, pooling information from similar location (e.g. using regional frequency analysis)

Binning scaling

Zhang et al., Nature Geo, 2017

Dewpoint temperature (T_d) and hourly rainfall (P) at 5 stations in the Netherlands (1957-2015; colours indicate stations)

- a) Significant warming
- b) No discernable trend in extreme hourly P
- c) Significant (but noisy) relationship between T_d and summer max hourly P (we estimate ~6.8% intensity increase for a 1°C increase in T_d)

Conditional hourly rainfall percentiles (conditional on wet-day T_d) at 5 NLD stations for 1957-2015

- Strong super Clausius-Clapeyron (CC) scaling is evident
- And warming is evident
- Why don't we see significant long-term change in extreme hourly precipitation?
- Can we use binning scaling to project future change in extreme hourly P?

Conditional hourly precipitation percentile in Rossby Centre RCM (ENSEMBLES)

- Thick curves historical climate
- Dotted curves future climate
- Thin curves historical, scaled by CC rate
- Models shift the binning scaling curve upwards and to the right (at the CC rate)
- Annual or seasonal max precipitation increases at the CC rate where thermodynamics dominate
- Long return period extremes increase at the CC rate, not the super-CC rate

Temperature scaling using RFA

Chao Li, et al., in review

Questions and approach

- Are individual, 65-year rainfall records sufficient to reliably estimate how extreme rainfall is changing with warming?
- If not, can some variant of regional frequency analysis come to the rescue?
- How much data is really needed to confidently identify the impact of warming?
- Framework for answering these questions
 - A large ensemble of 35 regional climate simulations for North America
 - Based on CanESM2/CanRCM4, 1951-2100, 50 km spatial resolution
 - Historical period (1951-2015) provides 35x65 = 2275 annual maxima
 - Entire period provides 35x150 = 5250 annual maxima
- Fit non-stationary statistical extreme value models at individual grid boxes and in 350x350 km regions (using the "index flood" approach)

Proportion of grid boxes where the magnitude of the 100-year 1-hour event is well estimated by temperature

Results for 100-year annual maximum hourly rainfall

Proportion of grid boxes where the magnitude of the 2-year 1-hour event is well estimated by temperature

Results for 2-year annual maximum hourly rainfall

What do we learn from this?

- At site analysis based on single records not sufficient
- RFA helps a bit, but still doesn't provide enough information to describe non-stationarity well
- Temperature scaling is effective over most of North America (there are some areas where thermodynamics alone don't describe simulated changes in extreme precipitation well)
- But ... need much more than a single 65-year record to reliably identify such relationships

Review/Discussion

Review/Discussion

- Evidence suggests that we are intensifying precipitation extremes and altering flood regimes
- Definitive statements about storm activity and other aspects of the hydrological cycle remain difficult
- The engineering community increasingly recognizes the need to account for a changing climate, which alters environmental "loads" to which infrastructure is exposed
 - Wind/temperature/snow/rainfall/ice loading, etc
- Stationarity is dead, but nevertheless, it is challenging to reliably and defensibly account for non-stationarity in local and regional engineering design

Questions?

https://www.pacificclimate.org/

Photo: F. Zwiers

Additional topics

Storms

Storms

- Some evidence of attributable change in surface pressure distribution (indicative of long-term circulation change)
- Few, if any, D&A studies of long-term change in position of extratropical storm tracks, storm frequency or intensity
- Models (eg, broad range of frequency biases in the occurrence of explosive extra-tropical cyclones in CMIP5 class models – Seiler and Zwiers, <u>2015a</u>, <u>2015b</u>)
 - Dynamical downscaling with a regional climate model helps reduce this bias somewhat (Seiler et al, <u>2017</u>)
- Projections do not show large increases in storm frequency, but suggest that the intensity of the strongest storms may increase
- Some evidence that extra-tropical storm tracks will shift somewhat poleward (e.g., Seiler and Zwiers, <u>2015b</u>)

Terrestrial hydrological cycle

Hydrologic extremes

- Few studies linking change in mean hydrologic conditions to GHGs
 - Barnett et al, 2008, Fyfe et al., 2017 (Western US)
 - Najafi et al, 2016, 2017 (part of British Columbia)
 - Detect the effect of warming on snowpack and/or streamflow characteristics
 - Also detect the effect of warming on snow cover extent
 - Complex spatial variation in hydrologic sensitivity (Grieve et al, <u>2014</u>; Kumar et al, <u>2015</u>) complicates robust detection of responses (Kumar et al, <u>2016</u>)
- IPCC assessed low confidence in the understanding of historical changes in drought and only medium confidence in modelling evidence that suggests a likely intensification of drought
- There is greater confidence in projected changes in extreme precipitation, and therefore flash flooding in smaller basins

Riverine Flooding

Projected Fraser River streamflow under RCP 8.5

Courtesy Siraj Ul Islam

Annual peak flow timing and magnitude

Late 20th century

Late 21st century

10 different runs (2.5% of total = 630)

Days 1-90 & 215-365: 167 occurrences over all 21 runs (27% of total = 630)