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Background

. Climate warming has contributed to global sea level rise of 1.7 mm/yr over the past
century and 3.2 mm/yr over the past few decades (Church and White 2011, Merrifield et
al. 2013)
« Regional sea level dynamics are super-imposed upon global mean sea level change
o Atmosphere-ocean interactions that include storm surge related to seasonal varying storm
activity and type;

m Intra-annual, annual, interannual, and decadal variations in sea level anomalies [El
Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Atlantic

Multidecadal Oscillation (AMO)]
m Varying sea level anomalies may enhance or suppress factors such as storm surge and
regional sea level rise rates.

o Vertical Land motion
o Changes in ocean structure
o Additions to ocean mass from melting land ice
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Background

Relative sea level rise (RSLR) is most relevant to coastal infrastructure

o Relative to a tidal datum of mean sea level
Coastal inundation and flooding relative to mean higher high water (MHHW) level.

O

« Consequences of RSLR are:
Increased frequency or probability of coastal inundation/flooding

m  Major events due to storm surge, rainfall, climatic events

= Nuisance flood events due to tidal variations
Intergovernmental Panel on Climate Change (IPCC) recognized that societal impacts of

sea level change primarily occur via extreme events rather than as a direct consequence of

O

global mean sea level change.
IPCC notes that the majority of global coastlines will be affected by RSLR by the end of

the 21st century [Seneviratne et al., 2012]
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Background

Observed Monthly Sea Level
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(Ezra and Atkinson, 2014 Earth’s Future)

Regional / Local Sea Level Rise =

Datum(x) + Global Sea Level (t)+ Vertical Land Movement
(VLM)(x,t) + Melting of Land-Based Ice (x,t) + Dynamic Sea
Level (DSL)(x,t)

Global Sea Level: t varies over decades to

VLM:

Melting:

DSL:

centuries
x varies from 100 — 1000 km, t varies over
1000s of years

X varies from 100 — 1000 km, t varies over
decades to centuries

Includes tides, ocean dynamics,
atmospheric dynamics

X varies from 10s to 1000s of km, t varies
from hours to years



Background

Schematic of water level

measurements relative to tidal datums,

high tides, and flood level thresholds

Probability density estimate
of hourly water level at the
New York City Battery Park
tidal gauge.

— = tidal station datums
- - - = elevation threshold for
nuisance flood impacts
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Relative Sea Level Rise: Nuisance (Tidal) Flooding

Empirical distribution of daily highest water levels at
Norfolk, Virginia for the 1960s and 2010s.

Flood impact thresholds defined by the U.S. National Weather

Service
An
g 1960s |2010s Major
el
- = ] Moderate
a = Minor
T o
=0
-
? (RS
a 3
% E
c Z
o
I | ;

—
-
o
—

[]
=
oo

n

0.0 0.8
Height Abave MHHW (m)

Annual flood frequencies (based on 5-yr
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Relative Sea Level Rise: Flood Categories

Charleston, South Carolina
Hours per year 3ft (0.9m) above MHHW in Charleston
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(Ezra and Atkinson, 2014 Earth’s Future)
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Regional / Local Adjustments to Global Sea Level Rise

Regional / Local Sea Level Rise = Datum(x) + Global Sea Level (t)+ Vertical Land Movement
(VLM)(x,t) + Melting of Land-Based Ice (x,t) + Dynamic Sea Level (DSL)(x,t)

Regional Sea Level
Factors that Affect Regional

and Local Sea Level

VLM = f ( tectonic motion, sediment

compaction, groundwater or oil depletion,
e oatl ol post-glacial response)

changes of land-based ice mass

Vertical Land Movement Dynamical Sea Level
subsidence, tectonic land
movement, water and
source extraction, and
glacial isostatic
adjustment

Melting = land-based ice affects

DSL =f (ocean currents, low-level
winds, salinity, temperature, tides, storms)

Adapted from IPCC 2001
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Regional / Local Adjustments to Global Sea Level Rise

Rate of Vertical Land
Motion (VLM) at
tidal gauge locations

Uplift in Northern Hemisphere
high latitudes due to glacial
isostatic adjustment

Subsidence over lower latitudes
with largest values over southeast
Asia and the northern coast of the
Gulf of Mexico

Wopplemann and Marcos (2016),
Rev. Geophys.
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Regional / Local Adjustments to Global Sea Level Rise

Dynamic Sea Level

DSL defined as the deviation of
dynamic sea level from the mean
steric sea level rise (thermal
expansion) scaled by global mean
temperature:

DSL(x,t) = global steric mean(t) +
scale(x,t) * global mean
temperature(t)

Perrette et al. 2013, Earth System
Dynamics
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Regional / Local Adjustments to Global Sea Level Rise

Extreme Still Water Level (EWL) = Tide (astronomical + seasonal) +
Non-Tidal Residual (Storm Surge + Sea Level Anomaly)

Regional physical factors:
Tropical cyclones
Extratropical cyclones
Local bathymetric characteristics

Storm Surge/Nontidal Residual

I

EWL does not include surface wave run-up, which
includes wave set up and swash.

Run-up Extreme
Still Water Level Mean Sea Level

—
Interannual
Variability

Astronomical
Tide Range

Extreme
Total Water Level

Water levels reported relative to a tidal datum
estimated over a multi-year epoch.

Adapted from Moritz et al. 2015: U.S. Army Corp of Engineers
document
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Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario

Extreme Value Statistics: Kl 1T Raxina
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Maximum water level over a specified time
interval: Generalized Extreme Value(GEV)
Distribution

Height (cm)
S 3

Water level that exceeds a pre-determined s o
threshold: Peaks over Threshold and the i . _ _ _
Generalized Pareto Distribution (GPD) , Positive shape Is associated with a
Norfolk San Diego thin trail — relatively rare extreme
events.

Each distribution has three parameters:
Location: Median/mean of water level
values

Scale: Spread in the water level values
Shape: Skewness of the distribution and

relation to the occurrence of rare (extreme f i |
events). 0 50 100 150 200
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Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario

TG NTR GEV: 100 yr Return Level
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Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario
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Regional / Local Probabilities of EWL In a Relative Sea Level

Rise Scenario

Empirical Analysis of 5000 Synthetic Tropical Cyclones and SLOSH-Derived Water Levels at Charleston

Charleston, SC Sea Level Rise Projections
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Regional / Local Probabilities of EWL In a Relative Sea Level

Rise Scenario

Empirical Analysis of 5000 Synthetic Tropical Cyclones and SLOSH-Derived Water Levels at Charleston

Charleston, SC Sea Level Rise Projections
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Regional / Local Probabilities of EWL In a Relative Sea Level Rise

Maximum Water Level(ft): Charleston Gauge: HITS 5000 Scenario 3/2030
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Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario

Extreme Value Analysis is sensitive to location, distribution character, and uncertainties related to
maximum likelihood estimates of the three parameters.
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Analysis of tidal gauge data at two relatively close locations results in different return

) periods associated with the Sandy event in New York Harbor and in relation to the
C)JUP'TER confidence intervals about the return levels. (Lin et al. 2010)



Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario GEV scale parameter - o

0.15

Parameters of the GEV distribution of
extreme water levels (sum of tide and storm
surge)

The scale parameter varies by latitude as
increased storminess at higher latitudes
increases the variability in water levels.

0.05

The shape parameter is most positive in
regions where infrequent but extreme events
produce high water levels and a thin right-
hand tail to the water level distribution.

These are regions in which tropical cyclones
occur.
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Regional / Local Design Life in a Relative Sea Level Rise
Scenario: Allowances

GPD shape parameter

a
e w - Sea level rise allowances:
X 0.4

"- 0.2 Height adjustment from historic flood levels.
That maintain under uncertainty the annual

0.0
XN\{ i) "\\ RE expected probability of flooding.

Account for:
Risk Tolerance
Time horizon
Confidence in the sea level rise

Relatively rare, extreme events (tropical projections
cyclones)

R

The GPD shape parameter is positive (thin
right-hand tail) for the east coast of the U.S.
and the northern Gulf of Mexico:
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Regional / Local Probabilities of EWL In a Relative Sea Level
Rise Scenario

A 1 m increase in sea level increases the exceedance probability and lowers the return period
(right) 5 m-flood level.
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A region with low variability in flood level (steep exceedance probability distribution)
will have larger increases in flooding frequency under sea level rise. (Vitousak et al.
OJUPIT'R 2017, Scientific Reports)



Maximum Water Level in each Year (feet)

Regional / Local Design Life in a Relative Sea Level Rise Scenario
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Regional / Local Design Life in a Relative Sea Level Rise

a, Boston, MA
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Scenario: Allowances

Instantaneous allowance
for various risk levels

Design life allowances
starting for 30 year
projects with variable
start dates from 2020 -
2070

1% design life
allowances with limited
degree of confidence in
future projections,

Buchanan et al. 2016, Climate Change
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Conclusions

Regional variations in global sea level rise has important consequences for coastal impacts due to
inundation and flooding.

Acceleration in relative sea level rise rates, which are projected to occur during the 21st century, will
continue to intensify inundation impacts and further reduce the time between flood events.

Under extreme events with low probability (i.e., tropical cyclones, 100-yr return periods relative sea
level rise has already begun and will continue to nonlinearly compress recurrence probabilities
smaller storm surges will increasingly impact fixed elevations [Hunter 2010; Park et al., 2011;
Tebaldi et al., 2012; Sweet et al., 2013].

Lesser extremes due to tidal flooding are increasing in time

Availability of probabilistic sea level rise projections provide an opportunity to better coastal flood
risk decision making and management.

Risk-based decision and information can be placed in the context of design life flood levels,
instantaneous allowances, and design-life allowances, which account for asset-specific time frames
and large uncertainties in sea level rise projections

Not accounting for a non-stationary climate can compromise design life standards of projection even

OJUPITERfor short duration low probability events.



Outstanding Issues

- Regional attributes:
Prioritization
Relative contributions and cancellations
Data sources

. Data

Homogeneity across regions and sources
homogeneity
formats
Exchange [atmosphere and ocean]
Quality
- Models
Understanding of current capabilities
Validation
Incorporate model-based projections of factors that contribute to extreme water levels
Storm structures
Storm frequencies
Storm intensities

. Methods

Compute, understand, and convey uncertainties
Incorporate future climate states
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