

Geodesy on the move

Dealing with dynamic coordinate reference systems

Roger Lott Chairman, IOGP Geodesy Subcommittee

IOGP Geomatics Industry Day Stavanger, April 2017

Historic geodesy

- datum origin and geodetic network on the Earth's crust
- CRS is national or regional
- examples: ED50, NAD27, NAD83(86), AGD66, AGD84
- <u>coordinates do not change with time</u> = "static".
- mental image of a solid Earth: "Third <u>Rock</u> from the Sun"

Earth-centred, earth-fixed frame

Tectonic plate velocities

EU \approx 2.5 cm/yr Australia \approx 7 cm/yr

Plate motion in an ECEF frame

Coordinates on the surface of the earth change with time: "dynamic".

The terms 'static' and 'dynamic' are from the viewpoint of a crust-based observer.

Defining stations (on crust) have <u>coordinates and rates.</u> These have a reference epoch.

ITRF-based static CRSs

- Snapshot of global dynamic system
 - defined to be same as ITRFxx at a specific reference epoch ...
 - ... but fixed to a plate regional static
 - examples:

ETRF89, NAD83(2011), GDA94, GDA2020

- modern national geodesy
- reference from ITRF dealt with by <u>time-dependent</u> transformation
 - when ITRF updated, may be a new transformation and realization
 - ETRF89 ... ETRF2000
 - NAD83(CSRS)v2 ... NAD83(CSRS)v7

Semi-dynamic reference frames

Hybrid, hoping to get best of all worlds

- static for applications that can ignore tectonic motion
- dynamic for those that require highest accuracy
- national or regional

Two approaches:

- (1) True semi-dynamic
 - Two components
 - (i) static
 - (ii) time-dependent deformation model
 - examples: New Zealand NZGD2000, Canada CGVD2013, NN2000

(2) Periodically-updated

- coordinates periodically updated
- example: Israel IG05, IG05/12

Trend is for future geodetic reference frames to be semi-dynamic

The issue

The apparent drift of dynamic CRSs has been ignored

- ETRF89 was defined to be ITRS at epoch 1989.0
- At 2.5cm per year, by 2017 ETRF89 differs from ITRF & GNSS by 75cm
 WGS 84
- GDA94 was defined to be ITRF92 at epoch 1994.0
- At 7cm per year, by 2017 GDA differs from ITRF & GNSS by over 1.5m WGS 84

With advances in real-time positioning technology the differences can be detected

Australia traffic accident

Coordinate operation methods

Need to account for the temporal change of the dynamic CRS, as well as the movement of the traditional, plate-bound, CRS seen from the viewpoint of the dynamic CRS.

Time-dependent Helmert transformation

- 15 parameters
- Two steps:
 - 1) 7 transformation parameter values for the desired epoch are computed from the rate parameters
 - 2) 7-parameter transformation applied
- e.g. ITRFxx > ITRFyy, ITRF2008 > GDA94

Time-specific Helmert transformation

- 8 parameters
- Two steps:
 - a) coordinates to be converted within the dynamic CRS to this time
 - b) 7-parameter transformation applied
 - e.g. PZ-90.11 to WGS 84 (G1150) [GLONASS to GPS]
- **Change of epoch** within a dynamic CRS (for time-specific step (a) above)
 - "coordinate propagation"
 - 5 parameters (3 geocentric or geographic coordinate velocities, start and finish times)
 - Velocities for station coordinates from:
 - i. Station solution
 - ii. Plate motion or deformation model

Coordinate operations

Between CRSs both with static datum

No time dependency e.g. ED50 > OSGB 1936, NGO 1948 > ED50

Between CRSs both with dynamic datum

- Time-dependent transformation e.g. ITRF2008 > ITRF2014
- Time-specific transformation e.g. PZ-90.02 > PZ-90.11

Between CRSs of different dynamism ...

- dynamic, semi-dynamic, static
- ... using different transformation methods
 time-dependent, time-specific
- with deformation or velocity grid

Time

Time referencing has three (four) contexts:

- Dynamic <u>CRS</u> reference epoch ITRF2008 reference epoch is 2005.0, ITRF2014 reference epoch is 2010.0
 - 2008 / 2014 just names
 - 2005.0 / 2010.0 = dates to which station coordinates & rates refer
- Coordinate data epoch
 - Attribute of data set, nothing to do with CRS definition
 - ITRF2008 @ 2014.65 ≠ ITRF2008 @ 2017.23 ≠ ITRF2008 [@2005.0]
- <u>Transformation</u> reference epoch, which in itself has two forms

 a. parameter reference epoch for time-dependent transformations
 b. transformation reference epoch for time-specific transformations
 - both of these are one of the transformation parameters

The problems

1. User confusion

- complex
- all components of the problem vary over time.
- 2. Inadequate metadata: coordinate epoch not clear

3. Indirect transformations

• ETRF89 > ED50 versus ETRF89 > WGS 84 > ED50

4. Time-dependent transformation methods only found in specialist software

Recommendations

- 1. Users need to
 - be aware of whether the CRS is dynamic or static
 - in addition to the CRS being identified the time [epoch] of coordinates should be recorded when using a dynamic CRS
 - ITRF2014 @ 2017.23
 - WGS 84(G1762) @ 2017.23
 - convert data to common epoch before merging
 - be aware that WGS 84 ≈ ETRFxx (or any other ITRS-derived static CRS) is an increasingly unacceptable approximation – for submetre accuracies stop using it!
- 2. Software developers should
 - add time-dependent transformation methods
 - add velocity grids
 - allow for coordinate epoch as a dataset attribute

What is IOGP doing?

- 1. Guidance Note in preparation
- 2. Guidance note 373-17 revision (Gulf of Mexico)
- 3. Additions to EPSG Dataset
 - all realizations to be added
 - ensembles to be added
 - dynamic CRSs to be identified

