Oil & Gas business decisions, safety of personnel, assets, operational activities, and also protection of the natural environment, are often dependent on having complete, correct, consistent and current information of our operating locations and areas of interest. Geomatics is the combined discipline of Survey & Positioning and Geospatial Data Management, and provides accurate positioning and mapping support across the full O&G life cycle.

The most recent update about the Committee’s work is available here

Our key work areas

Practical Geodesy


Seabed Survey Data Model

P6 Data Model

Earth Observation

Geophysical operations

Practical Geodesy

Practical Geodesy

Practical Geodesy

Think the Earth is round? Think again. Actually the Earth – land and sea – is continuously changing shape, influenced by factors such as its rotation, gravity and tectonic movement. Our Practical Geodesy work supports the description of the definitions of coordinates for describing locations on, above and below the surface of the Earth.

In order to improve our industry’s surveying capability, IOGP develops and maintains specialist tools and resources.

EPSG Dataset

The EPSG Geodetic Parameter Dataset is a collection of definitions of coordinate reference systems and coordinate transformations. These may be global, regional, national or local in application. To learn more visit

The Dataset is maintained by IOGP members through the Geodesy Subcommittee of the Geomatics Committee. It is distributed publicly at no cost as both an online ( and offline ( resource, both requiring acceptance of the Terms of Use.

Dynamic Coordinate Reference Systems

Following the release of updated GN25 Dynamic versus static CRSs and use of the ITRF and new GN26 Coordinate Transformations in the US Gulf of Mexico OCS, the Committee has now delivered a video introducing the concept of dynamic coordinate reference systems. The video is shared under the same T&C as other IOGP Publications and can be reproduced in whole or in part provided (i) that the copyright of IOGP and (ii) the sources are acknowledged.

Guidance Notes

Several IOGP’s short documents give guidance to the industry on geodetic topics:

We are also the custodians of UKOOA Report: Guidance notes on the use of coordinate systems in data management on the UKCS.

Information about Guidance Notes on other Geomatics topics may be found on other pages of this web site.



Geo-information (which includes location, coordinate and geo-code) accounts for about 80% of exploration and production data. Much of this information is stored in a variety of applications, databases and formats, including the widely used Geographical Information Systems (GIS).

Common geography provides an extremely powerful means to integrate E&P information in support of business decision-making for exploration, new business, construction, field development and decommissioning – in fact every aspect of the upstream life-cycle. We develop industry guidelines, good practices and specifications regarding the use of this data.

Shell Standard legend

IOGP’s Executive Director, Gordon Ballard, has welcomed Shell’s offer to release these documents to industry and is pleased to make them available for download:

In addition to the standard documents Shell also makes available files to support the Shell Standard Legend. These are available from the Esri Style gallery:

Whilst every effort has been made to ensure the accuracy of the information contained in this publication, neither the IOGP nor any of its members past present or future warrants its accuracy or will, regardless of its or their negligence, assume liability for any foreseeable or unforeseeable use made thereof, which liability is hereby excluded. Consequently, such use is at the recipient’s own risk on the basis that any use by the recipient constitutes agreement to the terms of this disclaimer. The recipient is obliged to inform any subsequent recipient of such terms.

Seabed Survey Data Model

Seabed Survey Data Model

Since its publication in April 2011, the Seabed Survey Data Model (SSDM) has become the de facto industry standard for delivering seabed survey data in geographic information system (GIS) format.

Historically, geographical features interpreted from seabed survey data have been delivered in unstructured CAD files. This has made the management, integration and exchange of the survey data and interpretation of results difficult. To address these issues the IOGP Seabed Survey Data Model (SSDM) Task Force was formed in 2010 to define a standard GIS data model for delivery, management and exchange of seabed survey data. In January 2017 IOGP successfully released an updated version of the model (SSDM V2) incorporating the industry feedback received so far.

Version 2 of the SSDM package may be downloaded here (21 MB). The zip will unpack itself into the following structure:

  • 1_Change_Log
  • 2_Data_Dictionary
  • 3_Data_Model_Templates
    • 2a_GIS
    • 2b_SeabedML
  • 4_Data_Model_Guidelines
  • 5_Symbology
  • 6_Metadata
    • FGDC
    • ISO19139
  • 7_ Feedback_Form

The IOGP reports supporting SSDM Version 2 are also available directly via the IOGP library:

Other useful documentation:

P6 Data Model

P6 Data Model

The IOGP P6/11 seismic bin grid data exchange format defines the following parameters for a 3D seismic survey:

  • Coordinate Reference System (CRS) and coordinate transformation parameters between global and local geodetic CRSMaster bin grid definition/coverage
  • Bin grid origin and increments
  • Scale factor of the bin grid
  • Nominal bin width
  • Full fold definition/coverage

Since the creation of the original P6 format in 1998, Geographic Information System (GIS) has become a common application used by operators to manage, analyse and map geo-information. GIS enables integration of geo-information of which seismic positioning data is an essential component. The requirement to be able to visualize and use seismic bin grid definitions and data in GIS has become increasingly important for:

  • Seismic positioning QC (is a bin grid in the correct geographic location relative to surrounding seismic surveys, wells, permits etc?)
  • Improved spatial understanding of seismic coverage
  • Linking survey outlines to documents to enable map based search for seismic acquisition and processing reports

With this in mind, IOGP has developed a GIS data model for the storage and visualization of seismic bin grid definitions that is based on the new IOGP P6/11 seismic bin grid exchange format.

The P6 GIS Data Model package may be downloaded here. The zip will unpack itself into the following structure:

  • 0 – Data dictionary
  • 1 – Guidance note – Report 483-6g
  • 2 – Data Model template
  • 3 – Symbology
  • 4 – P6GML
  • 5 – Example dataset
  • 6 – Presentation
  • 7 – Feedback form

Earth Observation

Earth Observation

Crisis response teams tackling the 2011 Japanese Tsunami disaster and the 2010 Haiti earthquake were helped by access to information generated by a space technology known as ‘Earth Observation’. This view from space can also help the oil and gas industry – and not only in a crisis.

Also known as ‘remote sensing’, it involves using earth-orbiting satellites or dedicated survey aircraft to obtain timely access to information about the status of the surface of the Earth.

The advantages of this technology – both onshore and offshore – include:

  • Establishing historic baselines for new developments to minimize health and safety risk exposure to people carrying out routine monitoring operations.
  • Allowing timely and effective decision-making during an emergency response

Other applications could include:

  • Sea ice monitoring
  • Environmental baseline mapping
  • MetOcean parameters mapping and derived modelling.

OGEO Portal

The OGEO Portal, supported by the Earth Observation Subcommittee, creates a platform designed to allow an improved communication between the service providers and the oil and gas companies. To find out more go to

Geophysical Operations

Geophysical Operations

The IOGP’s Geophysical Operations Subcommittee monitors and identifies the need for industry guidelines or standards for exploration, development and production related geophysical operations, with the objective of recommending good industry practice to improve the safety, quality and efficiency, and to develop new guidelines and standards as required. Specific areas of interest include:

  • Positioning for geophysical operations, especially seismic surveying, on- and offshore
  • ‘P’ geophysical position data exchange formats (P1, P2, P6)
  • Drilling hazard site and development route geophysical surveys
  • Geophysical instrumentation such as Multibeam Echosounders, Sidescan Sonar, Sub-bottom Profilers and Magnetometers, where they are used for seismic and drilling hazard site surveys.

We promote continuous improvement in the quality of geophysical data used to assess drilling or development risk due to shallow / seabed hazards and also in seismic positioning, in support of increasingly demanding geophysical objectives and the developments in acquisition techniques necessary to achieve them.

We maintain the following IOGP Geomatics Committee guidelines and data exchange standards through regular reviews and document updates in accordance with the IOGP requirements, either in direct control or through temporary Task Force(s):

Number Title
373-18-1 Guidelines for the conduct of offshore drilling hazard site surveys
 373-18-2 Conduct of offshore drilling hazard Site Surveys – Technical Notes
483-1 P1/11 (v1.1) Geophysical position data exchange format.
483-1u P1/11 (v1.0) Geophysical position data exchange format – User Guide (Please note that there are minor differences between v1.0 and V1.1 as outlined in P1/11 and P2/11 V1.1 format documents. V1.1 of the User Guide is expected in Q2 2016).
483-2 P2/11 (v1.1) Positioning data exchange format.
Sample file OGP P2/11 V1.1 is available below.
483-6 P6/11 (v1.1) Seismic bin grid data exchange format
483-6u IOGP P6/11 Seismic Bin Grid Data Exchange Format – User Guide (483-6u)
483-6g P6/11 Guidelines for the use of the OGP P6/11 bin grid GIS data model (see here for the P6 DM)

P2/11 V1.1 supporting material:

We are also the custodians of several legacy positioning formats:

Number Title
 483-1 P1/11 (v1.0) Geophysical position data exchange format
483-2 P2/11 (v1.0) Positioning data exchange format
UKOOA P1/76 Data Exchange Format
UKOOA P1/78 Data Exchange Format
UKOOA P1/84 Data Exchange Format
UKOOA P1/90 Data Exchange Format – Post Plot
 UKOAA P2/86 Data Exchange Tape Format – Raw Marine Positioning Data
UKOOA P2/94 Data Exchange Format – Raw Marine Positioning Data
UKOOA P6/98 Data Exchange Format – 3D Seismic Binning Grids
P-EPSG EPSG Co-ordinate Reference System Description in UKOOA P Formats
SEG P P1, P2, P3, P4 Standard exchange formats for positional data

We liaise and cooperate with other IOGP subcommittees, task forces, industry groups and other stakeholders on matters of mutual concern.

More information regarding new P1/P2 is available here and on new P6 – here, and here.

Please send any P formats feedback to

March 10, 2016, Webinar slides:

Surveying and positioning

Surveying and positioning

We monitor and identify the need for industry guidelines or standards for survey and positioning operations and recommend good industry practice to improve the quality, safety and efficiency of these operations and to develop new guidelines and standards as required.

We also maintain the following IOGP Geomatics Committee guidelines and data exchange standards through regular reviews and document updates in accordance with the IOGP requirements, either in direct control or through temporary Task Force(s):

We liaise and cooperate with other IOGP subcommittees, Task Forces, industry groups and other stakeholders on matters of mutual concern.

Geospatial integrity of geoscience software – GIGS

Geospatial integrity of geoscience software – GIGS

The purpose of this Guidance is to provide geoscience software developers and users with recommended industry best practice to evaluate the capabilities of their software with respect to establishing and maintaining geospatial data integrity.

GIGS is a process developed in response to significant concern and user experiences of violations of  geospatial integrity of data when using geoscience software, resulting in incorrect results, inconsistent understanding and misleading information for the user community.

The Guidance comprises six items, downloadable below:

  1. ‘Part 1 – Guidelines’ IOGP report number 430-1, describing the GIGS process. This guidance note is supplemented by a companion MS PowerPoint slide pack (with notes) explaining the GIGS process and business benefits
  2. ‘Part 2 – Software Review’ IOGP report number 430-2, containing a software review checklist to enable structured testing of geoscience software. This software review document is supplemented by an MS-Excel spreadsheet version (ZIP or RAR) of the checklist, intended to facilitate the execution of a geoscience software review and capture its results
  3. ‘Part 3 – User guide for the GIGS Test Dataset’ IOGP report number 430-3. This user guide supports a series of data files to be used for testing of the algorithms and data exchange capabilities of the geoscience software. The test dataset is included.

Send your feedback to

Back to top button